

# Algebraic Graph-theoretic Measures of Conflict

Jérôme Kunegis

Based on work performed in collaboration with Christian Bauckhage, Andreas Lommatzsch, Stephan Spiegel, Jürgen Lerner, Fariba Karimi and Christoph Carl Kling

Journée Graphes et Systèmes Sociaux (JGSS), March 18, 2016, Avignon





#### **Social Network**



# Slashdot

WeST

News for Nerds. Stuff that matters.

## http://slashdot.org/



#### Chrome iPhone (Score:5, Funny) by oldhack (1037484) on Wednesday September 03, @09:55PM (#248 Stick Chrome with iPhone and you can run them stories to fill up a Reply to This Re:Chrome iPhone (Score:5, Funny) by commodoresloat (172735) \* on Wednesday September 03, @10: should be easy for google to do coz all they have to do to get the Reply to This Parent Re:Firefox Damage Control Is More Than Enough (Sco by Anonymous Coward on Wednesday September 03, @10:49 Forget the IPhone. The AMount of dAmage conTROL a the Net.

Reply to This Parent

Re:Firefox Damage Control Is More Than E
by mweather (1089505) on Wednesday Septembe

Konqueror has a windows port, too.



#### The Slashdot Zoo

Slashdot Zoo: Tag users as *friends* and *foes* 

Graph has *two* types of edges: friendship and enmity





#### **Signed Directed Social Network**

You are the fan of your friends and the freak of your foes.



The resulting graph is sparse, square, asymmetric and has signed edge weights.



## Wikipedia Edit Wars





# **Signed Bipartite Networks**





## **Other Signed Networks**

| Mv | Dutch college            | <ul><li>HumanSocial</li></ul> | D±                                                          |            | (1)                               |         | 32        | 3,062       | <b>◎</b> ⊞ |
|----|--------------------------|-------------------------------|-------------------------------------------------------------|------------|-----------------------------------|---------|-----------|-------------|------------|
| EP | Epinions trust           | Social                        | D±                                                          |            | (1)                               |         | 131,828   | 841,372     | <b>⋄</b> ⊞ |
| HT | Highland tribes          | HumanSocial                   | UΞ                                                          |            |                                   |         | 16        | 58          | <b>⋄</b> ⊞ |
| SZ | Slashdot Zoo             | Social                        | D±                                                          |            |                                   |         | 79,120    | 515,397     | III =      |
| co | Wikipedia conflict       | OnlineContact                 | UΞ                                                          |            | $\overline{\bullet}$ $\mathbb{O}$ |         | 118,100   | 2,917,785   |            |
| EL | Wikipedia elections      | OnlineContact                 | D±                                                          |            | (1)                               |         | 7,118     | 103,675     | □          |
| W2 | WikiSigned               | OnlineContact                 | D±                                                          |            |                                   |         | 138,592   | 740,397     | □          |
| AR | Amazon ratings           | <ul><li>Rating</li></ul>      | <b>B</b> *                                                  |            | $\odot$                           |         | 3,376,972 | 5,838,041   | □          |
| Bx | BookCrossing (ratings)   | <ul><li>Rating</li></ul>      | B *                                                         | 123<br>abc |                                   | 263,757 | 433,652   | □           |            |
| ER | Epinions product ratings | Rating                        | <b>B</b> *                                                  |            | $\odot$                           |         | 876,252   | 13,668,320  | □          |
| Fr | Filmtipset               | Rating                        | B *                                                         |            | $\odot$                           |         | 144,671   | 19,554,219  |            |
| J1 | Jester 100               | Rating                        | B *                                                         |            |                                   |         | 73,521    | 4,136,360   |            |
| J2 | Jester 150               | Rating                        | B *                                                         |            |                                   |         | 50,832    | 1,728,847   |            |
| LI | Libimseti.cz             | Social                        | Dst                                                         |            |                                   |         | 220,970   | 17,359,346  | □          |
| М1 | MovieLens 100k           | Rating                        | B *                                                         |            | $\odot$                           |         | 2,625     | 100,000     | <b>⋄</b> ⊞ |
| МЗ | MovieLens 10M            | Rating                        | <b>B</b> *                                                  |            | $\odot$                           |         | 80,555    | 10,000,054  | □          |
| M2 | MovieLens 1M             | Rating                        | B *                                                         |            | $\odot$                           |         | 9,746     | 1,000,209   | <b>⋄</b> ⊞ |
| NX | Netflix                  | Rating                        | B *                                                         |            | $\odot$                           |         | 497,959   | 100,480,507 |            |
| МО | Residence hall           | HumanSocial                   | $D\divideontimes$                                           |            |                                   |         | 217       | 2,672       | <b>⋄</b> ⊞ |
| Ms | Sampson                  | HumanSocial                   | $D  \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $ |            |                                   |         | 18        | 188         | <b>⋄</b> ⊞ |
| YS | Yahoo songs              | Rating                        | B *                                                         |            | $\odot$                           |         | 1,625,951 | 256,804,235 | <b>*</b>   |
| SX | Sexual escorts           | Rating                        | B **                                                        |            | (1)                               |         | 16,730    | 50,632      | <b>◇ Ⅲ</b> |

konect.uni-koblenz.de/networks



#### **Polarization**

Slashdot: 23.9% of edges are negative



Polarization, No conflict



## **Dyadic Conflict (Reciprocity of Valences)**

Balance





Conflict



## **Measuring Dyadic Conflict**

$$C_2 = \frac{\text{\#conflictDyads}}{\text{\#totalDyads}}$$





## **Tryadic Conflict (Balance Theory)**

#### Balance



Conflict

(Harary 1953)



## **Measuring Tryadic Conflict**

Definition:

$$C_3 = \frac{\text{#negTriangles}}{\text{#totalTriangles}}$$



(cf. Signed relative clustering coefficient, Kunegis et al. 2009)



#### **Balance on Longer Cycles**

Equivalent definitions: a graph is balanced when



- (a) all cycles contain an even number of negative edges
- (b) its nodes can be partitioned into two groups such that all positive edges are within each group, and all negative edges connect the two groups



#### **Frustration**

 Definition: The minimum number of edges f that have to be removed from a signed graph to make the graph balanced.

Example: f = 1



#### **Frustration (partitioning view)**

 Definition: minimum number of edges that are frustrated (i.e., inconsistent with balance) given any partition of the graph's nodes into two groups.





#### **Frustration: Computation**

 Computation of frustration is equivalent to MAX-2-XORSAT



- MAX-2-XORSAT is NP complete
- Solution: Relax the problem

see overview in (Facchetti & al. 2011)



#### **Algebraic Formulation**

- Let G = (V, E,  $\sigma$ ) be a signed graph.  $\sigma_{uv}$  = ±1 is the sign of edge (uv).
- Given a partition  $V = S_{U}T$ , let x be the characteristic node-vector:

$$x_u = \begin{cases} +1/2 \text{ when } u \in S \\ -1/2 \text{ when } u \in T \end{cases}$$

Number of frustrated edges:

$$\sum_{uv \in E} (x_u - \sigma_{uv} x_v)^2$$



#### **Frustration as Minimization**

f is given by the solution to:

$$f^* = \min_{X \text{ uv} \in E} \sum_{u \in E} (x_u - \sigma_{uv} x_v)^2$$
s.t.  $x \in \{\pm 1/2\}^{V}$ 

$$\sum_{u \in E} x_u^2 = |V| / 4$$

$$\Leftrightarrow ||x|| = \sqrt{|V|} / 2$$
Relaxation



## **Using Matrices**

The quadratic form can be expressed using matrices

$$\sum_{uv \in E} (x_u - \sigma_{uv} x_v)^2 = \frac{1}{2} x^T L x$$

where  $L \in \mathbb{R}^{\vee \times \vee}$  is the matrix given by

 $L_{uv} = -\sigma_{uv}$  when (uv) is an edge

 $L_{uu} = d(u)$  is the degree of node u

• L = D - A is the **signed** graph Laplacian



#### **Minimizing Quadratic Forms**

$$f^* = \min_{x} \frac{1}{2} x^T L x$$
  
s.t.  $||x|| = \sqrt{|V|} / 2$ 

$$\frac{8}{|V|}f^* = \min_{X} \frac{X^T L X}{X^T X}$$

$$\frac{8}{|V|} f^* = \lambda_{\min}[L]$$

Rayleigh quotient

min-max theorem

$$f^* = \frac{|V|}{8} \lambda_{min}[L]$$



#### **Relative Relaxed Frustration**

 Definition: Proportion of edges that have to be removed to make the graph balanced

$$F^* = \frac{f^*}{|E|}$$

$$F^* = \frac{|V|}{8|E|} \lambda_{min}[L]$$

$$0 \le F^* \le \frac{f}{|E|} \le 1$$
 
$$\lambda_{min}[L] \le \frac{8|E|}{|V|}$$



#### **Properties of L (Unsigned Graphs)**

- L is positive-semidefinite (all  $\lambda[L] \ge 0$ )
- Multiplicity of  $\lambda = 0$  equals number of connected components
- Smallest eigenvalue measures conflict
- Second-smallest eigenvalue measures connectivity ("algebraic connectivity")



#### **Properties of L (Signed Graphs)**

$$L = \sum_{uv \in E} L^{(uv)}$$

$$L^{(uv)} = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \text{ when } \sigma_{uv} = +1$$

$$L^{(uv)} = \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \text{ when } \sigma_{uv} = -1$$



## Minimal Eigenvalue of L (Signed Graphs)

- L is positive-semidefinite (all eigenvalues ≥ 0)
- L is positive-definite (all eigenvalues > 0) iff all connected components are unlabanced
  - Proof "⇒": by equivalence by all-positive graph
  - Proof "

    ": by contradiction (eigenvector would be all-zero)



# **What Unsigned L can Do**





# **What Signed L Can Do**





# Computing $\lambda_{min}[L]$

Sparse LU decomposition + inverse power iteration:
 O(|V|<sup>2</sup>) memory, but then very fast

#### % Matlab pseudocode

```
[XY] = sparse_lu(L);
[UD] = eigs(@(x)(Y \setminus X \setminus x), k, 'sm');
```



## **Temporal Analysis of C2**







## **Temporal Analysis of C₃**





Wikipedia elections



#### F\* over Time







#### **Cross-Dataset Comparison of F\***





#### Merci

konect.uni-koblenz.de

Contact: Jérôme Kunegis

Université Koblenz-Landau

<kunegis@uni-koblenz.de> @kunegis

We want more datasets with negative edges, and timestamps.

In particular: with changing and/or dissapearing edges