Affinity groups according to individual preferences

Alain Guénoche

CNRS, Institut de Mathématiques de Marseille alain.guenoche@univ-amu.fr

Avignon, 2016

Problem

Let $X = \{ n \text{ individuals } \}$

- x_+ (ranked) list of those x would like to be with
- x₋ (ranked) list of those x rejects out of his group

 $\{2n \text{ lists}\} \rightarrow \text{Affinity values } (\geq 0 \text{ and } < 0), \text{ non symmetrical}$

 $a:X imes X o \mathbb{Z}$

- Pb: Compute a partition of X in p classes
 - satisfying (at the best) affinity preferences
 - in (more or less) balanced classes

Many applications

- built teams in business companies
- spread workers in workshops or offices
- make working groups .. at school

Partition \Rightarrow Equivalence Relation \Rightarrow Make affinities symmetrical

• If there is a rejection iff a(x, y) < 0 or a(y, x) < 0

$$A(x,y) = \min\{a(x,y), a(y,x)\}$$

▶ Else, there in an attraction : $a(x, y) \ge 0$ and $a(y, x) \ge 0$

$$A(x,y) = \frac{1}{2}[a(x,y) + a(y,x)]$$

A primary classroom (n = 25)

▶ At most 3 (ordered) attractions (> 0) and rejections (< 0)

• weighted $\pm(3,2,1)$, indifference = 0

1	0	0	0	0	0	1	0	3	0	-1	0	0	0	2	0	0	0
2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	3	0	0	0	-1	0	-3	0	0	0	0	0	0	0	0	0	0
4	1	0	-3	0	-1	0	0	3	0	0	0	0	0	0	0	0	0
5	1	0	0	-1	0	3	0	0	0	0	0	0	0	2	0	-2	0
6	1	0	0	2	3	0	0	0	-1	0	0	0	0	0	0	0	0
7	0	0	0	0	-2	0	0	0	0	2	0	-3	0	1	0	0	0
8	0	3	0	0	0	0	0	0	-3	0	0	2	0	0	0	0	0
9	0	3	1	0	-1	0	0	2	0	0	0	-3	0	0	0	0	0
10	0	0	0	0	-1	3	0	-3	0	0	0	0	0	1	0	0	0
11	-2	0	0	0	-1	-3	0	0	0	0	0	0	0	0	2	3	0
12	0	3	0	0	0	0	-1	1	-2	0	0	0	0	0	0	-3	0
13	0	0	3	0	-1	0	-2	0	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	2	0	-1	3	0	0	0	0	0	0	0
15	0	0	0	0	-1	0	-2	0	0	0	3	0	0	0	0	2	0
etc																	

Symmetrical affinity values (\times 2)

1	0	0	3	1	1	2	0	3	0	-1	-4	0	0	2	0	0
2	0	0	0	0	0	0	0	3	3	0	0	3	0	0	0	0
3	3	0	0	-6	-1	0	-6	0	1	0	0	0	3	0	0	3
4	1	0	-6	0	-2	2	0	3	0	0	0	0	0	0	0	0
5	1	0	-1	-2	0	6	-4	0	-1	-1	-1	0	-1	2	-1	-4
6	2	0	0	2	6	0	0	0	-1	3	-6	0	0	0	0	0
7	0	0	-6	0	-4	0	0	0	0	2	0	-6	-4	3	-4	0
8	3	3	0	3	0	0	0	0	-6	-6	0	3	0	0	0	0
9	0	3	1	0	-1	-1	0	-6	0	0	0	-6	0	-1	0	0
10	-1	0	0	0	-1	3	2	-6	0	0	0	0	0	4	0	0
11	-4	0	0	0	-1	-6	0	0	0	0	0	0	0	0	5	3
12	0	3	0	0	0	0	-6	3	-6	0	0	0	0	0	0	-6
13	0	0	3	0	-1	0	-4	0	0	0	0	0	0	0	0	0
14	2	0	0	0	2	0	3	0	-1	4	0	0	0	0	0	0
15	0	0	0	0	-1	0	-4	0	0	0	5	0	0	0	0	4
.	1															

etc .. ||

Multicriteria Optimization Problem

Let
$$P = \{X_1, X_2, \dots, X_p\}$$
 be a partition on X

- 1. Rejections first
 - An undirected rejection graph
 - A coloring problem

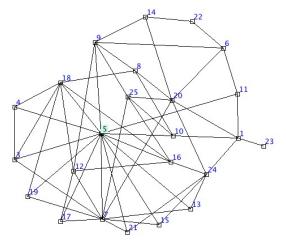
$$R(P) = \sum_{k=1}^{p} \sum_{x,y \in X_k, A(x,y) < 0} -A(x,y)$$

2. Combining rejections and attractions

$$W(P) = \sum_{k=1}^{p} \sum_{x,y \in X_{k}} A(x,y)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The rejection graph of the CE2 classroom



A clique of order 4 $\{3,4,5,18\} \Rightarrow \chi \ge 4$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Coloring the rejection graph

Optimal coloring NP-Hard \Rightarrow Heuristic *Dsatur* (Brelaz 1979)

Sat(x) = Nb. of colors in $\Gamma(x)$

While vertices are not colored

Select x with maximum Sat value then maximum degree Color x with the first possible color

For any y adjacent to x

y is saturated for this color Dg(y) := Dg(y) - 1Update Sat(y)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Dsatur has been extended to an optimal coloring (Brelaz, 1979)

but Classes are not balanced

Equitable coloring problem :

$$orall \{i,j\}, \ |card(X_i) - card(X_j)| \leq 1$$

I.L.P. (C. Ribero et al., 2014), B & B (Mendez-Diaz et al., 2015)

$$orall p, \exists G$$
 such that $\chi(G)=$ 2 and $\chi_{eq}(G)>p$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1. Balancing procedure (optimizing W)

```
While (gainmax > 0)

For all x

For any class without rejection of x

Let P' be the partition after x transfer

Dif = W(P') - W(P)

gain(x) := Max(Dif)

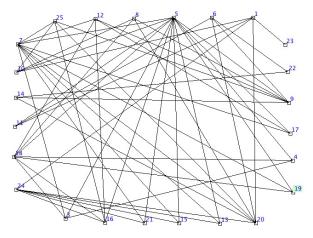
gainmax := Max(gain(x))

If (gainmax > 0) transfer x
```

2. Modify Dsatur

Colour x with the less used possible color

Pupil groups by Dsatur + Balancing procedure



Four groups (R = 0 and W = 37.5)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ = 臣 = のへで

Two strategies

- 1. Applying Dsatur + Balancing procedure
- 2. Applying Modified Dsatur + Balancing procedure

For random affinity graphs with 100 vertices

N _r	W_1	%Equi ₁						4	5	6
3	93.8	75	94	6	0	74.6	83	90	10	0
4	139.7	73	0	98	2	103.9	89	1	98	1
5	177.0	69	0	60	40	74.6 103.9 141.9	62	0	49	51

- N_r : Nb. of attractions and rejections per vertex
- W_i : Affinity weights
- $\& Equi_i : Equitable partition rate (cardmax cardmin \le 1)$
- 4,5,6 : Percentage of Pb. giving 4,5,6 classes

How far is Dsatur from χ ?

Applying

- 1. Strict Dsatur + Balancing procedure
- 2. Modified Dsatur + Balancing procedure

to random graphs with 100 vertices and $\chi=5$

Na	%Equi ₁	5	6	7	8	9	%Equi ₂	5	6	7	8	9
200	100	100	0	0	0	0	100	100	0	0	0	0
400	83	97	3	0	0	0	98	99	1	0	0	0
600	93	0	88	12	0	0	96	0	78	22	0	0
800	73	0	5	71	24	0	84	0	2	59	38	1
1000	47	6	0	9	55	30	44	6	2	7	57	28

 N_a : Nb. of edges per graph %*Equi*: percentage of Equitable partitions percentage of Pb. with 5, 6, 7, 8 or 9 groups

Combining attractions and rejections

Optimizing

$$\max_{P \in \mathcal{P}} W(P) = \sum_{k=1}^{p} \sum_{(x,y) \in X_{k}} A(x,y)$$

A classical NP-Hard problem for graph (network) partitioning

- when vertex paires are valued by *Modularity*
- with positive and negative values
 - Hierarchical ascending method (Girwan & Newmann, 2002)

- Random walk (Pons & Latapy, 2006)
- The Louvain method (Blondel et al. 2008)
- Bootstrap clustering (Gambette & Guénoche 2011)
- etc ..

Two simple algorithms

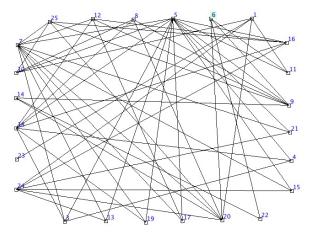
- $1. \ \ \text{Hierarchical ascending method}:$
 - Starting from the atomic partition
 - merge two classes making maximum affinity gain
 - until the required nb. of classes
- 2. Transfert method (as Louvain)
 - Start from a balanced (random) partition
 - Transfer vertex making maximum affinity gain (W)
 - while there is a > 0 gain

+

Balancing procedure and Rejection elimination procedure

```
Rejection elimination procedure
While (gainmax > 0)
     For all x rejected in its class c
          R(x) := Sum of the x rejection weights in c
          For any other class q
               Let R'(x) the x rejection weights in q
               Dif = R'(x) - R(x)
          gain(x) := Max_a \{Dif\}
     gainmax := Max_x \{gain(x)\}
     If (gainmax > 0) transfer x into class q
```

Other pupil groups



Four better groups (R = 0 et W = 45.0)

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Simulation II

Random affinity graphs with 100 vertices

- N_r attractions and rejections
- p classes are expected

Nr	p	W_1	Gap_1	R_1	<i>W</i> ₂	Gap ₂	R_2
3	4	113.4	4.1	6.5	109.4	3.4	5.9
4	5	168.0	4.0	4.3	164.7	3.4	4.1
5	5	206.8	4.0	14.4	209.7	3.6	12.9
5	6	225.6	4.3	3.2	109.4 164.7 209.7 221.4	3.5	3.3

- W : Affinity weights
- Gap : Difference between the largest and the smallest classes
- *R* : Average rejection weights (on the whole graph)

Conclusions

If rejections are mandatory (and can be satisfied) Dsatur strict + Balancing procedure give

- few classes
- a good equilibrium
- but smallest affinity weights

If rejections are not mandatory

Optimizing affinity weights gives better results The transfer method produces

classes which are better balanced (in the average)

less rejections