Affinity groups according to individual preferences

Alain Guénoche

CNRS, Institut de Mathématiques de Marseille
alain.guenoche@univ-amu.fr

Avignon, 2016

Problem

Let $X=\{n$ individuals $\}$

- x_{+}(ranked) list of those x would like to be with
- x_{-}(ranked) list of those x rejects out of his group
$\{2 n$ lists $\} \rightarrow$ Affinity values (≥ 0 and <0), non symmetrical

$$
a: X \times X \rightarrow \mathbb{Z}
$$

Pb : Compute a partition of X in p classes

- satisfying (at the best) affinity preferences
- in (more or less) balanced classes

Many applications

- built teams in business companies
- spread workers in workshops or offices
- make working groups .. at school

Partition \Rightarrow Equivalence Relation \Rightarrow Make affinities symmetrical

- If there is a rejection iff $a(x, y)<0$ or $a(y, x)<0$

$$
A(x, y)=\min \{a(x, y), a(y, x)\}
$$

- Else, there in an attraction : $a(x, y) \geq 0$ and $a(y, x) \geq 0$

$$
A(x, y)=\frac{1}{2}[a(x, y)+a(y, x)]
$$

A primary classroom $(n=25)$

- At most 3 (ordered) attractions (>0) and rejections (<0)
- weighted $\pm(3,2,1)$, indifference $=0$

| 1 | | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 3 | 0 | -1 | 0 | 0 | 0 | 2 | 0 | 0 | 0 |
| 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 3 | 3 | 0 | 0 | 0 | -1 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 4 | 1 | 0 | -3 | 0 | -1 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 5 | 1 | 0 | 0 | -1 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -2 | 0 |
| 6 | 1 | 0 | 0 | 2 | 3 | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 7 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 2 | 0 | -3 | 0 | 1 | 0 | 0 | 0 |
| 8 | 0 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 |
| 9 | 0 | 3 | 1 | 0 | -1 | 0 | 0 | 2 | 0 | 0 | 0 | -3 | 0 | 0 | 0 | 0 | 0 |
| 10 | 0 | 0 | 0 | 0 | -1 | 3 | 0 | -3 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
| 11 | -2 | 0 | 0 | 0 | -1 | -3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 3 | 0 |
| 12 | 0 | 3 | 0 | 0 | 0 | 0 | -1 | 1 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -3 | 0 |
| 13 | 0 | 0 | 3 | 0 | -1 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 14 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 0 | -1 | 3 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 15 | 0 | 0 | 0 | 0 | -1 | 0 | -2 | 0 | 0 | 0 | 3 | 0 | 0 | 0 | 0 | 2 | 0 |
| etc .. | | | | | | | | | | | | | | | | | |

Symmetrical affinity values $(\times 2)$

1	0	0	3	1	1	2	0	3	0	-1	-4	0	0	2	0	0
2	0	0	0	0	0	0	0	3	3	0	0	3	0	0	0	0
3	3	0	0	-6	-1	0	-6	0	1	0	0	0	3	0	0	3
4	1	0	-6	0	-2	2	0	3	0	0	0	0	0	0	0	0
5	1	0	-1	-2	0	6	-4	0	-1	-1	-1	0	-1	2	-1	-4
6	2	0	0	2	6	0	0	0	-1	3	-6	0	0	0	0	0
7	0	0	-6	0	-4	0	0	0	0	2	0	-6	-4	3	-4	0
8	3	3	0	3	0	0	0	0	-6	-6	0	3	0	0	0	0
9	0	3	1	0	-1	-1	0	-6	0	0	0	-6	0	-1	0	0
10	-1	0	0	0	-1	3	2	-6	0	0	0	0	0	4	0	0
11	-4	0	0	0	-1	-6	0	0	0	0	0	0	0	0	5	3
12	0	3	0	0	0	0	-6	3	-6	0	0	0	0	0	0	-6
13	0	0	3	0	-1	0	-4	0	0	0	0	0	0	0	0	0
14	2	0	0	0	2	0	3	0	-1	4	0	0	0	0	0	0
15	0	0	0	0	-1	0	-4	0	0	0	5	0	0	0	0	4
etc ..																

Multicriteria Optimization Problem

Let $P=\left\{X_{1}, X_{2}, \ldots, X_{p}\right\}$ be a partition on X

1. Rejections first

- An undirected rejection graph
- A coloring problem

$$
R(P)=\sum_{k=1}^{p} \sum_{x, y \in X_{k}, A(x, y)<0}-A(x, y)
$$

2. Combining rejections and attractions

$$
W(P)=\sum_{k=1}^{p} \sum_{x, y \in X_{k}} A(x, y)
$$

The rejection graph of the CE2 classroom

A clique of order $4\{3,4,5,18\} \Rightarrow \chi \geq 4$

Rejections first

Coloring the rejection graph
Optimal coloring NP-Hard \Rightarrow Heuristic Dsatur (Brelaz 1979)

$$
\operatorname{Sat}(x)=\mathrm{Nb} . \text { of colors in } \Gamma(x)
$$

While vertices are not colored
Select x with maximum Sat value then maximum degree
Color x with the first possible color
For any y adjacent to x
y is saturated for this color
$D g(y):=D g(y)-1$
Update Sat(y)

Equitable classes

Dsatur has been extended to an optimal coloring (Brelaz, 1979)
but
Classes are not balanced
Equitable coloring problem :

$$
\forall\{i, j\},\left|\operatorname{card}\left(X_{i}\right)-\operatorname{card}\left(X_{j}\right)\right| \leq 1
$$

I.L.P. (C. Ribero et al., 2014), B \& B (Mendez-Diaz et al., 2015)

$$
\forall p, \exists G \text { such that } \chi(G)=2 \text { and } \chi_{e q}(G)>p
$$

Balancing classes

1. Balancing procedure (optimizing W)

While (gainmax >0)
For all x
For any class without rejection of x
Let P^{\prime} be the partition after x transfer
Dif $=W\left(P^{\prime}\right)-W(P)$
$\operatorname{gain}(x):=\operatorname{Max}($ Dif $)$
gainmax := Max (gain(x))
If (gainmax >0) transfer x
2. Modify Dsatur

Colour x with the less used possible color

Pupil groups by Dsatur + Balancing procedure

Four groups ($R=0$ and $W=37.5$)

Simulations I

Two strategies

1. Applying Dsatur + Balancing procedure
2. Applying Modified Dsatur + Balancing procedure

For random affinity graphs with 100 vertices

N_{r}	W_{1}	\% Equi	4	5	6	W_{2}	OEqui $_{2}$	4	5	6
3	93.8	75	94	6	0	74.6	83	90	10	0
4	139.7	73	0	98	2	103.9	89	1	98	1
5	177.0	69	0	60	40	141.9	62	0	49	51

N_{r} : Nb. of attractions and rejections per vertex
W_{i} : Affinity weights
\% Equi i_{i} : Equitable partition rate (cardmax - cardmin ≤ 1)
4,5,6 : Percentage of Pb . giving 4, 5, 6 classes

How far is Dsatur from χ ?

Applying

1. Strict Dsatur + Balancing procedure
2. Modified Dsatur + Balancing procedure to random graphs with 100 vertices and $\chi=5$

N_{a}	$\%$ Equi $_{1}$	5	6	7	8	9	$\%$ Equi $_{2}$	5	6	7	8	9
200	100	100	0	0	0	0	100	100	0	0	0	0
400	83	97	3	0	0	0	98	99	1	0	0	0
600	93	0	88	12	0	0	96	0	78	22	0	0
800	73	0	5	71	24	0	84	0	2	59	38	1
1000	47	6	0	9	55	30	44	6	2	7	57	28

N_{a} : Nb. of edges per graph
\%Equi : percentage of Equitable partitions
percentage of Pb . with $5,6,7,8$ or 9 groups

Combining attractions and rejections

Optimizing

$$
\max _{P \in \mathcal{P}} W(P)=\sum_{k=1}^{p} \sum_{(x, y) \in X_{k}} A(x, y)
$$

A classical NP-Hard problem for graph (network) partitioning

- when vertex paires are valued by Modularity
- with positive and negative values
- Hierarchical ascending method (Girwan \& Newmann, 2002)
- Random walk (Pons \& Latapy, 2006)
- The Louvain method (Blondel et al. 2008)
- Bootstrap clustering (Gambette \& Guénoche 2011)
- etc ..

Two simple algorithms

1. Hierarchical ascending method:

- Starting from the atomic partition
- merge two classes making maximum affinity gain
- until the required nb. of classes

2. Transfert method (as Louvain)

- Start from a balanced (random) partition
- Transfer vertex making maximum affinity gain (W)
- while there is a > 0 gain
$+$
Balancing procedure and Rejection elimination procedure

Eliminating rejections

Rejection elimination procedure
While (gainmax >0)
For all x rejected in its class c
$R(x):=$ Sum of the x rejection weights in c
For any other class q
Let $R^{\prime}(x)$ the x rejection weights in q Dif $=R^{\prime}(x)-R(x)$ $\operatorname{gain}(x):=\operatorname{Max}_{q}\{\operatorname{Dif}\}$
gainmax $:=\operatorname{Max}_{x}\{\operatorname{gain}(x)\}$
If (gainmax >0) transfer x into class q

Other pupil groups

Four better groups ($R=0$ et $W=45.0$)

Simulation II

Random affinity graphs with 100 vertices

- N_{r} attractions and rejections
- p classes are expected

N_{r}	p	W_{1}	$G^{2} p_{1}$	R_{1}	W_{2}	$G a p_{2}$	R_{2}
3	4	113.4	4.1	6.5	109.4	3.4	5.9
4	5	168.0	4.0	4.3	164.7	3.4	4.1
5	5	206.8	4.0	14.4	209.7	3.6	12.9
5	6	225.6	4.3	3.2	221.4	3.5	3.3

W:Affinity weights
Gap : Difference between the largest and the smallest classes R : Average rejection weights (on the whole graph)

Conclusions

If rejections are mandatory (and can be satisfied) Dsatur strict + Balancing procedure give

- few classes
- a good equilibrium
- but smallest affinity weights

If rejections are not mandatory
Optimizing affinity weights gives better results The transfer method produces

- classes which are better balanced (in the average)
- less rejections

